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ABSTRACT

Motivation: Burgeoning sequencing technologies have generated
massive amounts of genomic and proteomic data. Annotating the
functions of proteins identified in this data has become a big
and crucial problem. Various computational methods have been
developed to infer the protein functions based on either the
sequences or domains of proteins. The existing methods, however,
ignore the recurrence and the order of the protein domains in this
function inference.
Results: We developed two new methods to infer protein functions
based on protein domain recurrence and domain order. Our first
method, DRDO, calculates the posterior probability of the Gene
Ontology terms based on domain recurrence and domain order
information, whereas our second method, DRDO-NB, relies on
the naïve Bayes methodology using the same domain architecture
information. Our large-scale benchmark comparisons show strong
improvements in the accuracy of the protein function inference
achieved by our new methods, demonstrating that domain
recurrence and order can provide important information for inference
of protein functions.
Availability: The new models are provided as open source programs
at http://sfb.kaust.edu.sa/Pages/Software.aspx.
Contact: dkihara@cs.purdue.edu, xin.gao@kaust.edu.sa
Supplementary information: Supplementary data are available at
Bioinformatics Online.

1 INTRODUCTION
Proteins play vital roles in biological systems. Understanding
their functions is one of the most important problems in biology
today. Due to rapid advances in genomic sequencing techniques
and computational gene identification, the number of explored
protein sequences has increased dramatically. A number of
experimental methods has been developed to predict the functions
of proteins (Hawkins and Kihara, 2007; Pandey et al., 2006).
These experimental methods, however, cover only a limited number
of experimental conditions and have limited protein coverage. In
addition, these methods cannot follow the exponential increase in
the number of newly discovered protein sequences or their variants,
caused by improved sequencing technologies.

∗To whom correspondence should be addressed.

A number of protein databases has been compiled such as UniProt
(Wu et al., 2006), PDB (Deshpande et al., 2005) and CATH
(Pearl et al., 2005). These databases, along with controlled function
vocabularies like Gene Ontology (GO), have made computational
annotation of protein functions easier. Various computational
techniques have been applied to predict protein functions based on
different features of protein sequences, such as protein functional
sites and domains (Forslund and Sonnhammer, 2008; Jung and Thon,
2006; Vogel et al., 2004), sequence similarity (Chitale et al., 2009;
Khan et al., 2003; Martin et al., 2004; Sael et al., 2012; Vinayagam
et al., 2004) and gene expression patterns (Pavlidis et al., 2002).
A comprehensive summary of the existing techniques can be found
in a number of reviews (Hawkins and Kihara, 2007; Pandey et al.,
2006; Rentzsch and Orengo, 2009).

The classical approach to the annotation of protein functions
is based on sequence similarity using BLAST (Altschul et al.,
1997) or similar programs. Other variants of this classical approach
include building phylogenetic trees to infer protein functions
based on proteins from the same subfamily (Engelhardt et al.,
2005; Krishnamurthy et al., 2007). On the other hand, machine
learning methods have been extensively applied to protein function
annotation, including support vector machines (Dobson et al., 2003;
Tan et al., 2009), naïve Bayes (NB) (Forslund and Sonnhammer,
2008), and decision trees to represent the GO annotation hierarchy
(Hayete and Bienkowska, 2005; Ivanoska et al., 2010). There are
also significant efforts in developing protein tertiary structure-based
function prediction methods that either consider global (Orengo
et al., 1994; Sael et al., 2008) or local structural similarity (Chikhi
et al., 2010; Sael et al., 2012).

Generally, it is believed that functions of a protein are carried
out via protein domains, which are protein’s functional or structural
units. Hence, it is intuitive that protein functions can be inferred
from the architecture of the domains. This logic has led to
development of models to predict protein functions from domain
information without regard to the protein amino acid sequence.
Domain context information has been applied to automatic protein
function prediction either implicitly or explicitly (Beaussart et al.,
2007; Coin et al., 2003; Forslund and Sonnhammer, 2008; Hayete
and Bienkowska, 2005; Mulder et al., 2007; Silvescu et al., 2004;
Song et al., 2007).

Silvescu et al. (2004) proposed several naïve Bayes models for
protein function annotation. Instead of using domains as the units in
their models, they selected k consecutive amino acids, i.e. k−grams,
as the units. The dependency between the k−grams was modeled by
the naïve Bayes approach. Hayete and Bienkowska (2005) applied
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the decision tree technique to assign functions to domains. Pfam2GO
was proposed by Mulder et al. (2007). They assigned GO terms to the
individual domains by sequentially mapping the InterPro domains
(Apweiler et al., 2001) to the Pfam domains. However, Pfam2GO
suffered from low sensitivity. Song et al. (2007) proposed algorithms
for protein alignment based on domain content. Their method was
analogous to the idea of homology search for protein sequences.

Forslund and Sonnhammer (2008) proposed two protein function
prediction methods using domain content. The method that
performed better of the two was the probabilistic model, which
was more accurate (higher precision) than the conventional BLAST-
based method, although the sensitivity of the model was lower,
suggesting that the model was able to predict highly reliable function
annotations, but with a trade-off for lower coverage. High precision
is preferred in automatic annotation of protein functions, however.

We hypothesize that protein functions are not determined only by
the dependency of the protein on the presence of domains, but also
by the recurrence and order of the domains. This information has not
been utilized in the existing protein function predictors, to the best of
our knowledge. To evaluate our hypothesis, we developed two new
methods that use such information explicitly, one that determines
posterior probability of the GO terms based on domain architecture
(referred to as the DRDO model), and the other that relies on the
naïve Bayes methodology (referred to as the DRDO-NB model).

We tested our newly developed models on several large-
scale benchmark datasets. The test results show that our models
outperform to a great extent a number of state-of-the-art predictors
of protein functions on the curated datasets. This supports our
hypothesis of the importance of the domain recurrence and order
information in inference of protein functions.

2 ILLUSTRATIVE SUPPORTING EXAMPLES
Here, we present two examples that illustrate the importance of the
domain recurrence and domain order in function determination. Both
of these examples are based on the violation of the Koide assumption
(Koide, 2009). Consider a protein with a domain architecture
A*B*B*A*C. The existing models assume that the protein will
have the same functions as proteins with domain architectures
A*B*C or B*C*A. Although there is evidences that some domain
rearrangements do not necessarily alter functions (Koide, 2009),
many of such domains do affect protein functions. The following
two examples illustrate our point.

(1) An adaptor protein DRK (downstream of receptor kinase)
is known to play an important role in sevenless receptor
signaling in Drosophila (Le and Simon, 1998; Moressis et al.,
2009; Olivier et al., 1993; Simon et al., 1993). DRK contains
one SH2 domain and two flanking SH3 domains. DRK binds
to the activated receptor tyrosine kinases through its SH2
domain, and it also binds to the C-terminal tail of Sos, a
Ras guanine nucleotide-releasing protein that is required for
sevenless receptor signaling, through its two SH3 domains,
as shown in Figure 1(a). Previous studies demonstrated that
both of SH3 domains are required to achieve binding affinity
(Olivier et al., 1993; Simon et al., 1993). This suggests that
information on both domain order and recurrence is essential
in determining the functions of DRK. Otherwise, a protein
that contains only one SH2 domain and one SH3 domain or a

protein that contains two consecutive SH3 domains and one
SH2 domain should perform the same functions in sevenless
receptor signaling, which has been found not to be the case
as described below.

To further verify this observation, we checked the SH2-
and SH3- containing proteins in UniProtKB. DRK has an
accession number Q08012. A2AVZ2, a protein, contains one
SH3 domain followed by one SH2 domain, whereas Q920I1,
another protein, contains one SH2 domain followed by one
SH3 domain. Neither A2AVZ2 nor Q920I1 has the GO term
‘GO:0045500: sevenless signaling pathway’, which belongs
to DRK. The pairwise molecular function (MF) similarity
when measured by simGIC (Pesquita et al., 2009) is 56, 18
and 21% for Q08012 versus A2AVZ2, Q08012 versus Q920I1,
and Q920I1 versus A2AVZ2, respectively. The detailed lists of
GO term for the three proteins can be found in Supplementary
Materials.

(2) The PDZ domain is one of the most commonly observed
structural domains found in signaling proteins from bacteria
to humans (Nourry et al., 2003). The glutamate receptor
interacting protein (GRIP) is a synaptic PDZ domain-
containing protein that consists of seven PDZ domains (Dong
et al., 1997). GRIP was found to interact with the C-terminus
of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid (AMPA) receptor (Dong et al., 1997; Lu and Ziff,
2005; Pawson and Nash, 2003), which is a transmembrane
receptor for glutamate that plays an important role in long-
term potentiation in the central nervous system and also
in learning and memory. AMPA contains four subunits, i.e.
GluR1-4 receptors. The fourth and fifth PDZ domains of
GRIP interact with the C-terminus of GluR2 Figure 1b, which
makes GRIP an adapter protein that links the AMPA receptor
to other proteins. However, many of the other PDZ domain-
containing proteins, such as syntenin, which consists of two
PDZ domains, do not interact with theAMPAreceptor (Nourry
et al., 2003). This suggests that domain recurrence information
is important to determining protein functions.

To further verify this observation, we checked GRIP and
syntenin in UniProtKB. GRIP’s accession number is P97879
and syntenin’s is O08992. Syntenin does not have the GO term
‘GO:0007399 nervous system development’, which belongs
to GRIP. The pairwise MF similarity when measured by
simGIC is 5.7%. The detailed lists of GO term for the two
proteins can be found in Supplementary Materials.

3 METHODS
The basic idea of our methods is that it is possible to predict relatively
accurately the GO terms associated to a protein with M domains (unique
or repeated or combination thereof) from the GO terms of proteins that
are associated with subsets of these domains up to M −1 domains. Thus,
in order to predict the function, i.e. GO terms, of a query protein that has
M domains, we use the GO terms for all proteins that have up to M −
1 of these domains and have GO annotation. Given a query protein, the
domains are assigned to it based on information from the SwissPfam database
(Sonnhammer et al., 1997), which provides the order of the domains present
in this protein sequence. The GO terms for each domain or each subset of
the domains are then extracted from the UniProtKB database. The goal is to
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Fig. 1. Two examples that demonstrate the importance of domain recurrence
and domain order. (a) Mechanism for DRK to couple activated receptor
tyrosine kinases to Sos. DRK binds to the activated receptor tyrosine kinases
through its SH2 domain, and binds to Sos through its two SH3 domains. Two
SH3 domains are required to achieve the affinity for binding. (b) Mechanism
of the interaction between GRIP and the AMPA receptor. The fourth and
fifth PDZ domains of GRIP bind to the C-terminus of the GluR2 receptor
of AMPA. Syntenin, which consists of two PDZ domains, does not bind to
AMPA

predict the probability for each GO term among some 30,000 to be associated
with the query protein. Here we propose two models to achieve this goal.

3.1 DRDO: a new probabilistic model
Given a domain set, D, and a GO term, G. According to the Bayes rule, the
conditional probability of G given D can be calculated as

P(G|D)= P(D|G)P(G)

P(D|G)P(G)+P(D|G)P(G)
, (1)

where P(·) denotes probability and G denotes the cases where the protein
does not possess function G. Equation (1) can be rewritten as

P(G|D)= α

α+1
, (2)

where α= P(D|G)P(G)
P(D|G)P(G)

. This conditional probability represents the posterior

probability of a specific set of GO-terms G given the domain set D. By using
the conditional independence assumption, which says that the distinct sets
in which P(D|G) and P(D|G) significantly differ occur independently, the
odds ratio α can be estimated as

α= 1

K
× P(G)

P(G)
×

K∏

i=1

P(Di|G)

P(Di|G)
, (3)

where the Di’s are the subsets of D that contain sequentially consecutive
domains, and K represents the number of such subsets Di , such that
K =M (M +1)/2−1, where M is the number of domains in D. All the
probabilities can be estimated by maximum likelihood estimation, i.e.
counting the frequency in the training set. In contrast to the cross-
validation training procedure for traditional machine learning methods,
the training of our model follows that of Forslund and Sonnhammer
(2008), in an incremental manner. That is, to predict functions for
a protein with M domains, proteins with up to M −1 domains are
used as the training set. For instance, given a query protein with
three domains, GO terms for each single domain are extracted from
the UniProtKB database. Then the GO terms for each subset of two
consecutive domains are predicted by using GO terms for single domains
according to Equation (3). The GO terms for the query protein are then
predicted by using GO terms for the single domains and the subsets of
size two.

Note that our model generalizes and extends a related model proposed in
Forslund and Sonnhammer (2008) (referred to as ‘FS model’ in the paper).
In the FS model, both the domain recurrence and domain order are ignored
when considering the protein domain architecture, D. That is, the domain
set in the FS model is actually the unordered set of distinct domains in D.
Therefore, for a domain set D=A∗B∗B∗A∗C, the corresponding Di subsets
are {A}, {B}, {C}, {AB}, {AC}, {BC} and {ABC}.

The FS model has two drawbacks. First, the model does not consider the
order of the domains. That is, a protein with a domain architecture A∗B
is assumed to have the same functions as another protein with the domain
architecture B∗A. This assumption is not always true as shown by the first
example presented in Section 2. Second, the FS model ignores the recurrence
of the same domain. That is, a protein with domain architecture A∗A∗A is
assumed to have the same functions as proteins with domain architectures
A∗A or A. This assumption, again, is not always true according to both
examples presented in Section 2.

It is clear that the main source of both of these drawbacks is the
construction of the domain set, D. According to the FS model, D consists
only of distinct domains. We can therefore preserve the domain recurrence
and order information relatively well by defining D as the original set of
all the domains in the protein and by defining the remaining orders of the
domains when enumerating the Di subsets. That is, when we enumerate the
subsets, we require each subset to contain only the sequentially neighboring
domains on the protein. Therefore, given a protein with domain architecture
D=A∗B∗B∗A∗C, the corresponding subsets are {A}, {B}, {B}, {A}, {C},
{AB}, {BB}, {BA}, {AC}, {ABB}, {BBA}, {BAC}, {ABBA} and {BBAC} (see
the difference in subset construction presented above).

Our hypothesis raises two intuitive concerns. The first is that if the original
domain set is used for enumeration, there will be many recurring Di’s because
a domain can appear several times in a protein. Therefore, the conditional
independence assumption may not hold. In fact, this is also an issue in the
FS model. Even if only the distinct domains are used, the subsets are still not
conditionally independent because they share common pairwise domains.
Forslund and Sonnhammer tried different methods to reduce the Bayesian
naïvete in their model. The best way was to normalize the odds ratio α by
the size of the domain set, K , as shown in Equation (3). Furthermore, the
naïve Bayes model is known to be tolerant to some degree of conditional
dependence. Therefore, we also use the normalized version of α as shown
in Equation (3) in our model.

The second concern is that since we enumerate all the subsets that contain
the sequentially neighboring domains, of the original domain set, the number
of subsets might be too large. In fact, the number of subsets enumerated
by Forslund and Sonnhammer (2008) is 2N −1, where N is the number of
distinct domains in the protein. For our case, because we only consider the
sequentially neighboring domains, the number of subsets is M (M +1)/2−1,
where M is the total number of domains in the protein. As shown in Figure
2, the largest number of domains for currently known proteins is below 60,
for which the number of subsets is approximately the number when N =11
in the FS model. Further details about the practical runtime are discussed in
Supplementary Materials.

3.2 DRDO-NB: a new naïve Bayes model
We start first by illustrating our naïve Bayes model with pairwise dependency
(k =2) as shown in Figure 3. Under the assumption of pairwise dependency,

Fig. 2. Distribution of the number of domains contained in the proteins in
the UniprotKB/TrEMBL 2011 database. The number of proteins is shown in
the log scale of base 10

i446



Copyedited by: MANUSCRIPT CATEGORY: ECCB

[15:09 7/8/2012 Bioinformatics-bts398.tex] Page: i447 i444–i450

Domain-based function prediction

Fig. 3. An example of a protein that has five domains with k =2

the joint probability of the five domains is

P(d1,d2,d3,d4,d5)

=P(d1)×P(d2|d1)×P(d3|d2)×P(d4|d3)×P(d5|d4)

=P(d1)× P(d2,d1)

P(d1)
× P(d3,d2)

P(d2)
× P(d4,d3)

P(d3)
× P(d5,d4)

P(d4)

= P(d2,d1)×P(d3,d2)×P(d4,d3)×P(d5,d4)

P(d2)×P(d3)×P(d4)

=
∏4

i=1 P(di,di+1)
∏4

i=2 p(di)
.

(4)

Similarly, we can generalize this rule for any protein that has M domains
and dependency k as

P(d1,...,dM )=
∏M −k+1

i=1 P(di,...,di+k−1)
∏M −k+1

i=2 P(di,...,di+k−2)
. (5)

Therefore, we can formulate the function annotation problem as a
classification problem, where the classification rule is

Classifier =argmaxGj∈GP(Gj|d1,...,dM )

∝argmaxGj∈GP(d1,...,dM |Gj)×P(Gj), (6)

where G represents all the GO terms and Gj denotes any single GO term.
According to Equation (4), we have

P(d1,...,dM |Gj)=
∏M −k+1

i=1 P(di ...di+k−1|Gj)
∏M −k+1

i=2 P(di ...di+k−2|Gj)
. (7)

Furthermore we use the Laplace’s correction to avoid zero probabilities
and get a mild regularization effect. The basic idea of Laplace’s correction
is that we initialize the counts with 1 rather than 0, then add an appropriate
count to the denominator to ensure that the probabilities sum up to 1.

We calculate Equation (7) for each k =1,...,M −1, such that
we can include all possible dependency combinations that encode
domain recurrence and order information. We then compute the
weighted average of the conditional probabilities and estimate
the conditional probability for a specific Gj given the domains of the
protein, according to Equation (6). This procedure is repeated for each
GO term and those with the largest probabilities are selected. In practice,
this procedure can be efficiently improved as described in Supplementary
Materials.

Contrary to Silvescu et al. (2004), which used amino acid sequence in
building naïve Bayes models, we are exploiting information from protein
domain recurrence and order. The models of Silvescu et al., 2004 suffer
from a drawback that for a large protein, the number of features their models
need is prohibitively large, which is not the case for our model.

3.3 Datasets
To evaluate the improvement from using domain recurrence and order
information, two large-scale benchmark sets are selected. The first dataset is
the same one used by Forslund and Sonnhammer (2008). This dataset consists
of two different subsets. The first subset is a combination of the UniRef50
non-redundant dataset that has gene ontology annotations according to the
Gene OntologyAnnotation (GOA) database and whose proteins are present in
the UniProt database. Since UniRef50 is non-redundant, function information
is not taken from closely similar sequences in prediction for a query. The
SwissPfam database was used to search the accession number of each protein

Table 1. Summary of function prediction performance on the ‘curated
annotations only’ subset of UniRef50

Dataset Curated annotations only
Dataset size 31,861 proteins

Sens. Spec. Prec. MCC

Best BLAST 38.0 >99.9 42.4 0.40
Pfam2GO 5.5 >99.9 55.2 0.17
MultiPfam2GO 7.5 >99.9 52.3 0.20
FS model 25.9 >99.9 59.3 0.39
DRDO model 41.2 >99.9 88.0 0.56
DRDO-NB model 47.8 >99.9 75.8 0.54

All the values listed in the table, except for the MCC values, are percentages.

and to determine the detailed domain architecture of the proteins. In this
article, we call this subset ‘all’. The second subset includes only curated
annotations which result from excluding any GOA with evidence code IEA
(Inferred from Electronic Annotation) from the ‘all’ datasets. We call this
subset ‘curated annotations only’.

We further selected a more up-to-date database, UniProtKB. The
UniProtKB contains two subsets. The first is UniProtKB/Swiss-Prot, which
contains the manual annotations. The second is UniProtKB/TrEMBL, which
contains high-quality records from automatic annotation classification.
Both UniProtKB/Swiss-Prot and UniProtKB/TrEMBL databases were
downloaded on August 12, 2011. The domain architectures were extracted
from the SwissPfam database.

4 RESULTS
Here, we compare the DRDO and DRDO-NB models with the FS
model and several other state-of-the-art protein function predictors.
The naïve Bayes model proposed in Silvescu et al. (2004) is not
compared here because it is not publicly available. The results from
the tests with the two datasets are discussed in this section. The
evaluation measurements are described in Supplementary Materials.

4.1 Performance on UniRef50 datasets
We first evaluated the proposed models on the UniRef50 datasets.
In Forslund and Sonnhammer (2008), the FS model was compared
with the best BLAST-based method, the Pfam2GO method and
the MultiPfam2GO method. MultiPfam2GO is an extension of the
Pfam2GO method that maps multiple InterPro domains to the Pfam
domains. Both DRDO and DRDO-NB models were compared with
these state-of-the-art methods on the same subsets of the UniRef50
dataset. Tables 1 and 2 show the comparison results on the two
subsets. For both of the proposed models, the GO terms are ranked
for each protein. The top ranked GO terms are selected until one of
the following two conditions satisfied: (i) the probability of the next
GO term has a difference that is bigger than 0.2 to that of the first GO
term; (ii) the probability of the next GO term has a difference that
is bigger than 0.08 to that of the previous one. The thresholds are
selected as the ones that perform well for both the proposed models
and the FS model on all the datasets.

We observe that all methods tested here achieved an almost perfect
specificity on both two datasets. As expected, when we considered
only the proteins with curated annotations, the performance of all
methods deteriorated, as shown in Table 1. The DRDO model and the
DRDO-NB model significantly outperformed all the other prediction
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Table 2. Summary of function prediction performance on the ‘all’ subset of
UniRef50

Dataset All
Dataset size 654,180 proteins

Sens. Spec. Prec. MCC

Best BLAST 87.8 >99.9 82.1 0.85
Pfam2GO 53.3 >99.9 99.6 0.73
MultiPfam2GO 56.7 >99.9 99.4 0.75
FS model 69.1 >99.9 93.9 0.81
DRDO model 84.7 >99.9 89.2 0.84
DRDO-NB model 79.8 >99.9 91.3 0.87
DRDO model (PC) 72.5 >99.9 94.2 0.83
DRDO-NB model (PC) 75.8 >99.9 94.3 0.85

‘PC’ stands for the precision-controlled performance of the corresponding models,
where the thresholds were set such that the DRDO model and the DRDO-NB model
both had precision values greater or equal to that achieved by the FS model. All the
values listed in the table, except for the MCC values, are percentages.

methods. To be more specific, by taking domain recurrence and
order information into consideration, the DRDO model achieved an
improvement of 59% on sensitivity and 48% on precision relative
to the FS model. The two proposed models have comparable
performance on this dataset. The DRDO-NB model gave higher
sensitivity but lower precision values than the DRDO model did.

When all proteins in the UniRef50 dataset were considered,
BLAST achieved the highest sensitivity, but the lowest precision,
as shown in Table 2. Pfam2GO, on the other hand, had the highest
precision, but the lowest sensitivity. The DRDO model and the
DRDO-NB model provided good tradeoffs between sensitivity and
precision. It can be seen in Table 2 that the FS model achieved a
relatively high precision (93.9%) on the entire UniRef50 dataset.
However, this is at the cost of missing true GO terms, which
caused lower sensitivity (69.1%). One possible reason is that the
FS model encoded only the distinct domain composition, but
ignored the domain recurrence and order information. By using such
information, the DRDO model achieved a precision value of 89.2%
but much higher sensitivity (84.7%). The MCC value is also much
higher than that of the FS model. We further controlled the thresholds
for selecting GO terms such that our two models achieved at least
the same precision as the FS model. The sensitivity values were
then compared as shown in Table 2. Although the sensitivity for
both proposed models decreased as a consequence of the higher
precision, both proposed models had higher sensitivity than the FS
model, demonstrating that our models performed better. However,
we were not able to show explicitly that our models performed
better than Pfam2Go and MultiPfam2Go, since we could not achieve
the same precision as these two models. Indirect comparison via
MCC suggested that our models overall could be more accurate
than Pfam2Go and MultiPfam2Go.

4.2 Comparison on UniProtKB datasets
We further compared the proposed models with the FS model on
a more up-to-date dataset, i.e. the recent UniProtKB dataset. The
performance of the three methods on both UniProtKB/Swiss-Prot
and the UniProtKB/TrEMBL datasets is shown in Table 3.

As shown in Table 3, the DRDO-NB model significantly
outperformed the DRDO model in terms of sensitivity and

Table 3. Summary of function prediction performance on UniProtKB

Dataset Swiss-Prot TrEMBL
Dataset size 497,872 proteins 10,168,218 proteins

Sens. Prec. MCC Sens. Prec. MCC

FS model 12.3 45.4 0.29 55.0 93.1 0.71
DRDO model 20.5 75.2 0.37 67.2 89.2 0.77
DRDO-NB model 49.2 95.6 0.68 79.2 89.0 0.84

Comparison of the FS model, the DRDO model and the DRDO-NB model on
the UniProtKB dataset. All values listed in the table, except the MCC values, are
percentages.

Fig. 4. ROC curves for the FS model (blue), the DRDO model (green) and
the DRDO-NB model (red) on the UniprotKB/TrEMBL 2011 database. The
area under curve (AUC) for the three models are given in the legend

MCC on both subsets. Both proposed methods, on the other
hand, significantly outperformed the FS model. On the
UniProtKB/TrEMBL dataset, the DRDO model outperformed
the FS model by 22% in terms of the sensitivity, whereas the
improvement was about 67% on the UniProtKB/Swiss-Prot dataset.
Figure 4 also highlights the improvements of the proposed models
over the FS model. The ROC curves were drawn by varying the
threshold for choosing the GO terms along the sorted list as the
predictions. These good improvements clearly demonstrate that
the domain recurrence and domain order can enhance the accuracy
of protein function prediction.

Figure 5 shows the MCC of the DRDO-NB model when different
values for k are used. All proteins in the UniprotKB/TrEMBL
database that have at least five domains were used to assess the
effect of the window size, k. Clearly, the performance of the model
increases when the window size increases. This strongly supports
our hypothesis that adding more domain information gives better
results. Note that the MCC value when k is set to 5 is almost
0.84, which is slightly lower than the value in Table 3, which is
the performance when the entire UniprotKB/TrEMBL database is
used and all possible window sizes are enumerated. Therefore, better
performance can be expected when more domain information is
encoded.

By comparing the results in Table 3 to those in Tables 1 and 2, we
can see that the performance of the FS and DRDO models decreases
significantly on the UniProtKB data. In contrast, the performance
of the DRDO-NB model is comparable on the ‘all’ subset of
the UniRef50 data and the ‘UniProtKB/TrEMBL’ subset of the
UniProtKB data. When only the proteins with curated annotations
are considered, the performance of the DRDO-NB model on the
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Domain-based function prediction

Fig. 5. MCC curve of the DRDO-NB model on the UniprotKB/TrEMBL
2011 database, when different values for k are used. Only the proteins that
have at least five domains are included in this experiment. Out of 10,168,218
proteins, 4,018,479 satisfy the requirements

‘UniProtKB/Swiss-Prot’ subset actually significantly improves over
that on the ‘curated annotations only’ subset, suggesting that the
DRDO-NB model is more robust than the other models.

4.3 Limitations
Both of our two models predict the GO terms for query proteins
by assuming the input of GO terms for each domain in the protein.
Although our models demonstrate significant improvements over
the state-of-the-art methods, the sensitivity and precision is still not
perfect. One of the main limitations in our method is that we rely
on the information contained in some databases and these may not
contain complete information or their records could be erroneous.
In other words, the TrEMBL database has partial association of GO-
terms to proteins and also has many wrong annotations which affect
the accuracy of our approach greatly. On the other hand, the curated
database Swiss-Prot is much more accurate than the TrEMBL, but
it also contains partial GO annotation and is considerably smaller.
This also affects the accuracy of our approach. The following is a
detailed description of the source of inaccuracies in our implemented
method: the main source of false positives is the GO terms that
appear frequently in the subsets of the domains of the query protein,
but are not associated with the query protein. On the other hand,
there are two main sources for the false negatives. The first is
that given a query protein, SwissPfam and UniProtKB databases
are used to extract domain architecture and the corresponding GO
terms for each domain; if any GO term for the query protein is
missed in these databases, our methods cannot predict this GO term.
The second is that if a GO term appears very frequently in single
domains of the query protein, the threshold in our models to select
GO terms can become high which results in falsely filtered out GO
terms. Furthermore, including more subsets in our models can boost
performance as suggested by Figure 5. However, in practice, we
could not include all the possible combinations of domains since this
is computationally infeasible. Finally, our models are domain-based
approaches and thus cannot distinguish between proteins that have
the same domain architectures but different amino acid sequences.

5 DISCUSSION
The main problem with sequence-based function predictors is that
the number of false positives is high. Domain-based predictors,
on the other hand, can achieve much higher precision. Therefore,
an ideal protein function annotation predictor should be able
to encode both the amino acid information and the domain

information. We are currently exploring how to use this sequence
information in combination with our proposed models. Another
possible improvement to our models can be achieved by using the
spatial positions of the domains with predicted or native tertiary
structural information. In addition, we are also trying to consider the
hierarchical nature of GO terms as a directed acyclic graph (de Lima
Morais et al., 2011) and checking the effects of considering the GO
terms from the MF and biological process (BP) separately, since
they are quite different in describing functional signals inherited in
domains. Furthermore, the overlap between the predictions made by
DRDO and DRDO-NB is about 70% (as shown in Supplementary
Table S4). It is thus possible to combine the prediction results from
DRDO and DRDO-NB to further enhance the accuracy.

As shown in Figure 2, most of the existing proteins have fewer
than 10 domains, whereas the largest number of domains found
so far for a protein is less than 60. This property enables efficient
enumeration as used in our methods and other domain-based
predictors.

The main focus of this article is to demonstrate that domain
recurrence and order is important for predicting protein functions.
Previous methods showed that considering domain architecture
improves prediction over conventional sequence similarity-based
methods. Here, we show that domain recurrence and order further
enhance protein function inference.
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